Variance Calculator

Calculate Population Variance, Sample Variance, and Standard Deviation.

Share this tool:

About Variance Calculator

This Variance Calculator is a powerful statistical tool designed to help you understand the spread of your data. Whether you are a student, researcher, or data analyst, calculating variance is a fundamental step in statistical analysis.

What is Variance?

Variance measures how far a set of numbers is spread out from their average value. A variance of zero indicates that all values within a set of numbers are identical. A high variance indicates that the data points are very spread out from the mean, and from one another.

Population vs. Sample Variance

It is crucial to choose the right calculation based on your data:

  • Population Variance (σ²): Use this when your data set represents the entire population (e.g., the heights of every student in a specific class). It divides the sum of squared differences by N.
  • Sample Variance (s²): Use this when your data is a sample taken from a larger population (e.g., a survey of 100 people representing a country). It divides by N - 1 to correct for bias.

Frequently Asked Questions

How to calculate variance in Excel?

To calculate variance in Excel, you can use built-in functions. For Population Variance, use the formula =VAR.P(A1:A10). For Sample Variance, use =VAR.S(A1:A10). Replace A1:A10 with the range of cells containing your data.

What is the difference between Variance and Standard Deviation?

Variance is the average of the squared differences from the mean, while Standard Deviation is the square root of the variance. Standard Deviation is often more useful because it is expressed in the same units as the original data, making it easier to interpret.

Why do we divide by N-1 for Sample Variance?

Dividing by N-1 is known as Bessel's Correction. When you take a sample, it is likely that you will miss the extreme values of the population. Dividing by N-1 slightly increases the calculated variance, providing an unbiased estimate of the true population variance.

Can variance be negative?

No, variance cannot be negative. Since variance is calculated by squaring the differences from the mean, the result is always non-negative. If you get a negative number, check your calculations!

Was this tool helpful?

Comments

Loading comments...

Check Out Other Popular Tools